ABSTRACT

This paper investigates a system of dynamic incentives developed within the framework of the classic Diamond and Mirrlees (1978) disability model, but considering disability as a temporary state and rephrasing the analysis in terms of current and promised future utilities. The model therefore assumes that if disabled individuals receive benefits to the extent that able individuals are indifferent between working and not working, then the marginal utility of consumption is lower for working individuals. A comparison, based on a numerical simulation, between the dynamic incentives (DI) model and a private savings (PS) model characterised by a stationary tax-transfer policy allows the assertion that, even if the first system converges to the second system, the total utility guaranteed by the government in the DI model is greater than the total value achieved by the PS model, and in the DI model, the gap in consumption between able and disabled individuals increases not only along working histories, as in the PS model, but also across working histories.

Key words: factor, tomatoes are sown on another hectare of land, and all agrotechnical

Аннотация

В данной работе исследуется система динамических стимулов, разработанная в рамках классической модели инвалидности Даймонда и Миrrлиса (1978), но рассматриваемая инвалидность как временное состояние и перефразирующая анализ с точки зрения текущих и обещанных будущих полезностей. Таким образом, модель предполагает, что если инвалиды получают пособия в той мере, в какой трудоспособные люди...
безразличны к тому, работают Они или нет, то предельная полезность потребления для работающих людей ниже. Сравнение, основанное на численном моделировании, между моделью динамических стимулов (DI) и моделью частных сбережений (PS), характеризующейся стационарной политикой налоговых трансфертов, позволяет утверждать, что даже если первая система сходится ко второй системе, общая полезность, гарантируемая правительством в модели DI, больше, чем общая стоимость, достигнутая моделью PS, и в модели DI разрыв в потреблении между трудоспособными и инвалидами увеличивается не только вдоль рабочих историй, как в модели PS, но и по всем рабочим историям.

Ключевые слова: фактор, томаты высеваются на другом гектаре земли, и все агротехнические

The answers of experts and scientists to the questions of gazetkhons, which are given under the" lessons of Economics " branch, are of great interest to many.

The next question is answered by The Economist Akrom Muminov:

- Economic growth is understood as an increase in the cost of direct gross domestic product (GDP) and its corresponding cost per capita.

If the goal is to assess the economic potential of the country, then pictures of the growth of the GDP will be used.

And the per capita GDP is used in assessing the standard of living of the population. In this case, the rate of change in the population by the rate of change in the size of the population is taken into account.

If the rate of change in the size of the population is higher than the rate of change in the number of inhabitants, the well-being of the population increases. If these indicators are the same, then the standard of living of the population does not change. If the rate of change in the size of the population goes beyond the rate of change in the number of inhabitants, then there is a decrease in the standard of living of the population.

In this place, it will be necessary to bring two factors that affect economic growth. They are: Extrasensory and intensive factors.
When we say the extractive factor, it is understood that the economic growth achieved by the expansion of the land space in farming, the launch of new capacities in industry, while retaining the old form of production.

For example, an average yield of 20 tons is obtained from one hectare of tomato field. In order to double the volume of tomato production in the extractive factor, tomatoes are sown on another hectare of land, and all agrotechnical measures are carried out just like in the previous one hectare of land, as a result of which another 20 tons of harvest is obtained, the total yield is reached 40 tons. Or, in order to double the production of bread, another enterprise with the same capacity will be built in addition to the existing one. In ecstasy development, production efficiency remains unchanged, if it is carried out in pure form.

And the intensive factor of economic growth is achieved through the qualitative improvement of production volumes means of production, that is, the application of advanced technologies, the improvement of workers' skills, as well as the effective use of existing production capacities. This factor is expressed in the increase in the quantity and quality of the product without spending excessive effort, capital, with the efficient use of the internal resources of production.

In order to double the volume of tomato production in an intensive way, it is not necessary to plant 2 hectares of land, but to apply advanced agrotechnical methods to exactly the same 1 hectare of land (drip irrigation, the use of techniques in ground handling, the use of new seeds and advanced methods of their cultivation, etc.).

But it should also be noted that in real life, in the pure case of extrasensory and intensive factors, it will not exist separately, but in a certain harmony, in a way that is added with each other.

Modeling to generate alternative planning first follows the approach of a linear programming model with an objective of maximizing a farm’s gross margin. Then alternative solutions are produced by allowing the optimal gross margin to be
reduced by a certain percentage. These alternatives are important to farmers because the production goal may not be to just maximize profit, but also optimize other aspects such as minimizing risk. Finding alternative solutions allows for the farm to choose a solution that meets multiple objectives for the farm while still maintaining nearly optimal profit.

Production process planning is presented by Vitoriano et al. as a linear programming model and is designed to allow “crop production planning to be decided at the beginning of the agricultural year.” The objective of the model is to minimize total cost related to agricultural production. There are two modeling approaches considered by Vitoriano et al. (2019), discrete and continuous time. The discrete time planning model was found to be best in shorter term planning horizons and the continuous time planning model was best for medium to long term planning horizons. Farmers can benefit from this model because it provides them with the solution of how and when to perform the tasks required for agriculture production.

Reference


[5]. Sheehy, J.E., Mitchell, P.L., & Ferrer, A.B. Decline in rice grain yields with